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Abstract: Sponge city construction (SCC) has improved the quality of the urban water ecological
environment, and the policy implementation effect of SCC pilots is particularly remarkable. Based
on the data envelopment analysis (DEA) model, this study employed the related index factors such
as economy, ecology, infrastructure, and the population of the pilot city as the input, and the macro
factors of SCC as the output, to scientifically evaluate the relative efficiency between the SCC pilots in
China. Eleven representative SCC pilots were selected for analysis from the perspectives of static and
dynamic approaches, and comparisons based on the horizontal analysis of the efficiency of SCC pilots
were conducted and some targeted policy suggestions are put forward, which provide a reliable
theoretical model and data support for the efficiency evaluation of SCC. This paper can be used as
a reference for construction by providing a DEA model for efficiency evaluation methods and thus
helps public sector decision makers choose the appropriate construction scale for SCC pilots.

Keywords: sponge city construction; data envelopment analysis; efficiency evaluation; water
ecological environment

1. Introduction

With the advancement of China’s urbanization [1–3], water-related problems are
worsening. In such circumstances, sponge city construction (SCC) is regarded as an
innovative step in terms of green transformation, resilient construction, and low-carbon
development of urban drainage management, considering due responsibility and aiming
for flexibility in dealing with the natural disasters caused by urban environmental changes
and water imbalances [4–7]. In 2015 and 2016, the Ministry of Finance, the Ministry of
Housing and Urban–Rural Development, and the Ministry of Water Resources of China
set up two batches of 30 typical national SCC pilots [8]. With the construction of these
SCC pilots, the ability to resist rain and flood disasters, to control water pollution, and to
improve the water environment has been strengthened. The pilots have been implemented
with remarkable results. During the 14th Five-Year Plan Period (2021–2025), these three
ministries and commissions will undertake the job of promoting SCC systematically and
comprehensively [9,10]. Therefore, the construction of a scientific and comprehensive
evaluation system is an important guarantee of the effectiveness of SCC pilots and the
systematic promotion of SCC in the whole region [11–13]. The “Sponge City Construction
Evaluation Standards” can ensure the construction quality, the performance level of SCC,
and the overall direction of construction projects, but fail to reflect the internal relationship
between the background and the construction level of sponge cities, as well as the efficiency
of the SCC pilots.
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Several scholars have conducted studies from different perspectives on the perfor-
mance and efficiency of SCC evaluation. At the macro level, most scholars took the
influencing factors involved in SCC as the evaluation index and constructed evaluation
systems, considering the aspects of water environment, security, ecology, and resources by
establishing various evaluation models [14–16]. Other researchers evaluated SCC via actual
case data from pilots [17–19]. At the micro level, SCC evaluation is mainly based on sponge-
body technology models such as the storm water management model (SWMM) [14,20].
Through model parameter calibration and scenario simulation, the effectiveness of the
low-impact development (LID) construction of the sponge body is evaluated [21,22]. Com-
pared with a macro evaluation, the index data of micro evaluation are difficult to collect,
and massive monitoring facilities are needed to build the evaluation system for the whole
city. Although the system for micro evaluation is more detailed and accurate, time and
experience of data acquisition and technical means are still required. The macro evaluation
of SCC is relatively simple and effective, directly reflecting the construction level of the
sponge city through macro data. Additionally, from both macro and micro perspectives,
the evaluation of SCC lacks horizontal comparison and efficiency evaluation between
pilot cities. The efficiency evaluation of SCC incorporates different input factors such as
urbanization level, urban population, and urban economic level, which may determine
the production scale of SCC (urban water environment status). By comparing the same
input of pilot cities, the output level can be obtained. When the output is the same, the
lower the input, the higher the efficiency. For now, quantitative research is limited to a
single-dimensional performance index, with little consideration of basic urban data on the
economy, ecology, population, and other factors involved in SCC pilots [23]. It should be
noted that these factors have a great impact on the construction and effectiveness of sponge
cities. The geographical background and socioeconomic development of Chinese SCC
pilots are complex and diverse. Though adopting the same capital and technical investment,
different pilots may have different efficiency in SCC. Therefore, the quantitative results
of basic indicators can provide a necessary basis for horizontal and relative comparisons
between cities.

In summary, existing studies have mostly focused on a certain region or pilot city
to evaluate the effectiveness of SCC, while few scholars have paid attention to efficiency
evaluation. In addition, few studies have conducted horizontal efficiency evaluation among
SCC pilots. It is necessary to study the differences in SCC efficiency between different
pilots [24]. To evaluate the efficiency of SCC scientifically and objectively, this study
constructed an SCC efficiency evaluation index model, based on data envelopment analysis
(DEA), considering the related indicators of the city’s economy, ecology, infrastructure,
population, and other factors as the input, and the macro indicators of the efficiency of
SCC as the output [25]. As far as current research on the efficiency of SCC is concerned,
most studies take capital investment in SCC projects as the basis, rarely considering factors
such as the ecological foundation and population of the city, and the input factors are
relatively simple. In addition, it is worth noting that research on SCC in China is mainly
related to the dimensions of water resources, water ecology, water environment, and water
safety (rain and flood management). However, it is difficult to obtain index data for the
stormwater management dimension from the perspective of whole pilot cities; therefore,
this paper mainly examines the efficiency of the SCC pilots from the perspective of the
water environment. It provides new research ideas and theoretical models for quantitative
evaluation and adaptive construction in the future.

To sum up, a DEA theory-based efficiency measurement model of China’s SCC was
constructed. The subsequent sections of this study are as follows. The model and data are
presented in Section 2. The DEA static and dynamic models are discussed in Section 2.1,
which introduces basic DEA theory. The efficiency evaluation indicators’ system of SCC is
established in Section 2.2, which elaborates the input and output indicators. Suitable pilot
cities are selected in Section 2.3, which describes the current situation and data sources.
The efficiency evaluation of China’s SCC pilots based on the DEA-BCC-Malmquist model
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is presented in Section 3, which analyzes the results from static and dynamic perspectives.
Section 4 summarizes the analysis and puts forward relevant suggestions. The efficiency
evaluation framework of this study is given in Figure 1.
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Figure 1. The efficiency evaluation framework of SCC pilots.

2. Model and Data
2.1. Basic DEA Model

A systematic study of efficiency theory was conducted by Farrell in 1957 [26]. Effi-
ciency evaluation is always expressed as the ratio of an objective’s outputs to inputs at a
specific time, from the perspective of management and economics, and has been studied
and applied in different fields [27,28]. A DEA model is a specific model of data envelopment
analysis, which analyzes the technical efficiency and scale efficiency of decision-making
units (DMUs). It is based on objective data, not affected by the data dimension or other sub-
jective factors. The DEA model possesses strong reliability and a scientific nature [29]. DEA
is widely used in the economic management field, mainly for environmental efficiency anal-
ysis [30,31], green development efficiency assessment [32], eco-efficiency evaluation [33–35],
energy efficiency [36], financial industry and innovation efficiency performance assess-
ment [37,38], water use efficiency and flood vulnerability assessment [25,39,40], urban
efficiency evaluation, etc. It has significant advantages in terms of simplifying calculations
and processing multiple input–output indicators. The multiobjective evaluation of the DEA
model could be used in the efficiency evaluation of SCC. Due to the multiple inputs and
outputs of sponge city indicators, the model can make greater use of index data to analyze
the efficiency and make horizontal comparisons between pilots.

2.1.1. DEA Static Model

The traditional DEA model measures the relative efficiency and obtains the corre-
sponding frontiers function, based on known data, to evaluate the efficiency of DMUs
with multiple inputs and outputs. The efficiency measurement of Constant Returns to
Scale (CRS) and Variable Returns to Scale (VRS) in DEA would be used to evaluate SCC
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input–output efficiency in China. To measure the construction efficiency of pilots and its
influencing factors, the Banker, Charnes, and Cooper (BCC) model, with the assumption of
variable returns to scale, was selected to analyze the technical and scale efficiency for the
efficiency evaluation system of SCC pilots, as shown in the following equation [28]:

Minγ

s.t.



n
∑

j=1
xjλj + s− = γx0

n
∑

j=1
yjλj − s+ = y0

n
∑

j=1
λj = 1

λj ≥ 0, s+ ≥ 0, s− ≥ 0

(1)

The meanings of the symbols in Equation (1) are as follows. ‘s.t.’ is a fixed term
of linear programming method, which means ‘subject to’. The present research selects
n (n = 11) regions as DMUs, assuming the input x0 and output y0 are constant; n is the
number of DMUs; j is the indexes for DMUs; xj is the input of the jth DMU, and yj is
the output of the jth DMU (see Table 1 for specific input and output indicators); λj is the
corresponding weight coefficient; γ is the efficiency for the DMUs and the value range is
[0,1]; s− is a relaxation variable representing the redundancy of input; and s+ is a residual
variable, while representing the insufficiency of output [30,41].

Table 1. Efficiency evaluation indicators system of SCC.

Indicator Type Indicator Name (Unit) Indicator Calculation Formula

Input indicators
(Urban population,

economy,
urbanization, water
resources, and other

macro indicators)

Urban employed people
(10,000 persons) —

Gross domestic product
(100 million Yuan) —

Development and utilization rate of water
resources (%) Total water consumption/Total water resources × 100%

Population urbanization rate (%) Urban resident population/Total resident population × 100%

Output indicators
(Urban water

ecological
environment

indicators)

Urban forest coverage (%) Urban forest coverage/Total urban area × 100%

Centralized sewage treatment rate (%) Urban domestic sewage treatment capacity/Total urban
domestic sewage discharge × 100%

Per capita green land area
(square meter) Urban public park green space area/Urban population

Greening coverage rate of built-up areas (%) The vertical projected area of vegetation/Total area of urban
land × 100%

The results of the BCC model include comprehensive technical efficiency (Effch), pure
technical efficiency (Pech), scale efficiency (Sech), and Effch = Pech × Sech. Comprehensive
technical efficiency is an evaluation of DMU’s resource allocation ability, resource utilization
efficiency, and other capabilities; pure technical efficiency refers to the production efficiency
of DMUs affected by management and technology, and scale efficiency reflects the matching
degree between the inputs and outputs of SCC [41,42]. When γ = 1, s− = 0, and s+ = 0, the
technical efficiency and scale efficiency of the DMUs are effective, the input and output of
DMUs are not redundant or insufficient, and the overall DEA is effective.

When γ = 1 and s− 6= 0 or s+ 6= 0, the technical efficiency or scale efficiency of the
DMUs is invalid, and the DEA of the DMUs is weakly efficient. When s− 6= 0, DMUs have
input redundancy, and the scale efficiency of DMUs is invalid; the original output can be
kept unchanged by reducing the input.

When γ = 1, the technical efficiency and scale efficiency of the DMUs are invalid. In
that case, the DEA of the DMUs is invalid.
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2.1.2. DEA Dynamic Model

The BCC model is a traditional DEA model, which performs a static analysis of DMUs’
efficiency. In terms of dynamic analyses, the Malmquist index model can measure the
dynamic efficiency of time series data and is now widely used in major research fields. The
Malmquist model is based on DEA and calculates the input–output efficiency by the ratio
of distance function [42,43]. The Malmquist index method calculates the Malmquist total
factor productivity index (Tfpch) via the change in productivity from this period (t) to the
next (t + 1), and makes a dynamic analysis of the DMUs’ efficiency. The calculation formula
of the total factor productivity index is as follows [32]:

Effch = Pech × Sech
Tfpch = Effch × Techch

, (2)

where Pech represents the pure technical efficiency index of the pilot, which reflects the
production efficiency of the input factors of the DMU at a certain scale (optimal scale);
Sech represents the scale development efficiency index of the pilot, which reflects the
difference between the actual scale and the optimal production scale; and Effch represents
the comprehensive technical efficiency change index of the pilot, which is composed of two
parts: Pech and Sech. Pech measures the gap (the management level of DMUs) between the
actual technical efficiency and the benchmark technical efficiency, in the implementation of
SCC pilots, while Sech measures the gap (the investment scale) between the actual technical
scale and the optimal technical scale [41]. Techch represents the technological progress
efficiency index of a pilot, while Tfpch represents the total factor productivity index of
a pilot.

All the figures are taken to have a reference value of 1, representing an increase of
more than 1, and a decrease of less than 1. The exponential method achieves effective
decomposition of Tfpch by constructing a distance function. The distance function of
Malmquist index Dt and the Malmquist index from t to t + 1 are as follows. Dt(xt, yt)
and Dt+1(xt, yt) are the distances between the DMU(xt, yt) in period t and the frontiers of
period t and period t + 1, respectively. Dt+1(xt+1, yt+1) and Dt(xt+1, yt+1) are the distances
between the DMU(xt+1, yt+1) in period t + 1 and the frontiers of period t + 1 and period t,
respectively [27].

According to Equation (2) of the Tfpch, the Malmquist index takes the geometric
average from Tfpch of the subsequent period. We can see the Malmquist index from year t
to year t + 1 in Equation (3) [32]:

Mi(xt+1, yt+1; xt, yt)= Tfpch = Effch × Techch =
Dt+1

i (xt+1, yt+1)

Dt
i (xt, yt)

×
√

Dt
i (xt+1, yt+1)

Dt+1
i (xt+1, yt+1)

×
Dt

i (xt, yt)

Dt+1
i (xt, yt)

. (3)

Some scholars further decomposed Effch into Pech and Sech combined with VRS,
expressed as in Equation (4):

Mi

(
xt+1, yt+1; xt, yt

)
=

Dt+1
i
(

xt+1, yt+1|VRS
)

Dt
i (xt, yt|VRS )

×
[

Dt
i
(

xt, yt|VRS
)

Dt
i (xt, yt|CRS )

/
Dt+1

i
(

xt+1, yt+1|VRS
)

Dt+1
i
(

xt+1, yt+1|CRS
) ]× [ Dt

i
(

xt, yt|CRS
)

Dt+1
i (xt, yt|CRS )

/
Dt

i
(

xt+1, yt+1|CRS
)

Dt+1
i
(

xt+1, yt+1|CRS
) ]

= Techch× Sech× Pech = Tfpch

(4)

The subscript with VRS is a case of variable returns to scale, while the subscript
with CRS is a case of constant returns to scale. The three items on the right side of
Equation (4) are the technical efficiency change, scale efficiency change, and technical
change under the condition of variable returns to scale [42]. Pech > 1 shows that the
technical management level of SCC pilots has improved; if Sech > 1, the DMU is gradually
getting closer to the optimal scale. Moreover, Tfpch > 1 shows an improvement in total
efficiency; Tfpch = 1 indicates that the total efficiency is unchanged, while Tfpch < 1 means
a reduction in total efficiency [41].
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2.2. Index System for Efficiency Evaluation of SCC Pilots

SCC is a complex system project. In the selection of the indicators affecting SCC
effectiveness, it is necessary to comprehensively consider the economic, social, and natural
ecological factors that affect SCC. In terms of economic and social factors, the efficiency
of SCC is closely related to its economy, infrastructure, and population. The construction
of different sponge cities varies according to the economy, infrastructure, and population.
National SCC pilots are affected by factors such as the economic level, population scale,
and hydrological conditions of each city, resulting in different economic development
levels, planning goals, and sponge projects among pilots. Therefore, it is unscientific to
evaluate efficiency only by the scale of SCC; instead, it is necessary to make a horizontal
comparison based on the efficiency of the pilots [44]. According to the influencing factors
of SCC and the actual output of urban construction, the efficiency of SCC in several pilots
is appropriately evaluated. At the level of natural ecological factors, the differences in the
background conditions of the environment between pilots will lead to different efficiency
levels of SCC. For example, the topography and terrain of the pilot play an important role in
the storage and discharge of rainwater, the climate characteristics and geographical location
affect the precipitation and vegetation characteristics of the pilot, and the performance
of urban infiltration facilities affects the soil permeability and groundwater level [45–48].
Considering the above contents, the constructed efficiency evaluation indicators system of
SCC is shown in Table 1.

It can be seen from Table 1 that the indicators reflecting the urban economic level, pop-
ulation scale, and urbanization degree are selected as input indicators from the statistical
yearbook of each pilot. Macro indicators of SCC are selected as output indicators, including
urban forest coverage, centralized sewage treatment rate, per capita green land area, and
greening coverage rate of built-up areas. Among the input indicators, the urban employed
people reflects the population scale level of the pilot, and the employed population indi-
rectly reflects the economic level of the pilot, which suggests the urban labor force and
vitality; the population urbanization rate is an intuitive embodiment of urban urbanization;
the gross domestic product of the pilot directly reflects the overall economic level of the
city, which has an important impact on the infrastructure construction of a sponge city; and
the development and utilization rate of water resources reflects whether the urban water re-
sources reserve can meet the demand [49,50]. In terms of output indicators, a higher urban
greening level, i.e., urban parks and forests, can ensure the capacity of SCC to retain water
and perform water purification, which leads to the greater effectiveness of water ecological
constructions. The urban domestic sewage treatment rate can directly reflect the water
purification capacity of SCC and can indicate the effectiveness of the water environment
of SCC. Therefore, the urban greening level, ecological infrastructure construction status,
and urban sewage treatment capacity are direct indicators reflecting the performance of
SCC, which can be used as output contents of the DEA model to evaluate the efficiency
of DMUs. The indicator data in Table 1 are collected from the official statistical yearbook
and water resources bulletin of each pilot. In addition, indicators such as the total annual
runoff control rate and the density of the urban drainage pipe network can better reflect
the ability to withstand urban rain and floods, but it is difficult to obtain the indicator data.
Therefore, this paper mainly considers the water environment dimension of SCC.

2.3. Selection of SCC Pilots

According to the representativeness of the pilots and the availability of panel data,
11 national SCC pilots in Chongqing, Wuhan, Chizhou, Shanghai, Shenzhen, Xining, Bei-
jing, Xiamen, Jinan, Hebi, and Sanya were selected as samples for analysis. In the selection
of the announced SCC pilots, the urban area, geographical features, economic development
level, etc., were considered, which makes the case analysis comparable and valuable [51,52].
The list of specific pilots is shown in Table 2.
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Table 2. Geographic location and characteristics of the selected pilots.

Sponge City
Pilot

Geographical
Position

Urban
Comprehensive

Grade
Geographical Features

Chongqing Southwest China New first-tier city
The city has a mild climate, many low mountains and shallow hills,

great potential for hydropower development, and uneven distribution
of groundwater sources.

Wuhan Central China New first-tier city The city is mainly flat; there are many lakes and ponds, with rich
water resources.

Chizhou Eastern China Fourth-tier city The city is high in the southeast and low in the northwest, with a
ladder distribution from south to north, and is rich in water resources.

Shanghai Eastern China First-tier city The city has a flat terrain, facing the sea in the east, abundant rainfall,
and abundant water resources.

Shenzhen Southern China First-tier city
The city has many low hills and the central south coast, with abundant
rainfall, but the rainwater collection area and flow are small, and the

freshwater resources are relatively scarce.

Xining Northwest China Fourth-tier city The city is rich in surface water and groundwater resources.

Beijing Northern China Fourth-tier city The city is mainly plain, and freshwater resources are relatively scarce.
Fresh water comes from outside the city.

Xiamen Southeast China Second-tier city The southeast coast of the city is mild and rainy, and freshwater
resources are relatively scarce.

Jinan Eastern China Second-tier city The city has less rain, an obvious monsoon climate, and sufficient
groundwater resources.

Hebi Central China Fifth-tier city The city is located inland, with relatively scarce water resources and
large water demands.

Sanya Southern China Third-tier city The city is surrounded by the sea, and there is a lack of
freshwater resources.

The selected SCC pilots, with different geographical locations and geographical char-
acteristics, have comparative value. Before applying to build an SPC, it is necessary to
conduct a self-examination of the economic level of the city, design and propose a rea-
sonable construction model, and ensure the high efficiency of construction and operation
throughout the life cycle. In addition, according to the aim of “adopting a replicable and
scalable innovation model such as technology plus capital and overall packaging” in the
“Sponge City Construction Pilot City Application Guide” [9,53,54], it can be explained that
the economic level and policy support of the pilots are meant to maintain the efficiency
of urban-related projects. On top of that, after the pilot cities were determined in 2015
and 2016, each began to implement SCC projects according to its urban economic level,
ecological and natural conditions, and the application of low-impact development tech-
nology. The construction period of a pilot city is three years, and the pilots conducted
performance evaluations in 2018 and 2019. Considering the lag of the implementation effect
of construction projects, the four-year urban panel data from 2017 to 2020 were selected
as the basis for the dynamic efficiency evaluation of the pilots, and the specific year data
status is shown in Tables 3 and A1. Therefore, the selection of these 11 pilots can reflect the
relative efficiency level of SCC to a great extent.
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Table 3. Descriptive statistics of the SCC pilots’ main variables from 2017 to 2020.

Year Variable Mean Max Min Std. Dev

2020

Urban forest coverage 42.394 69.000 18.500 206.716
Centralized sewage treatment rate 97.114 100.400 93.000 4.684

Per capita green land area 14.469 18.000 9.050 6.130
Greening coverage rate of built-up areas 42.802 48.960 37.320 8.744

Urban employed people 647.199 1676.010 65.900 379,294.137
Gross domestic product 14,848.682 38,700.580 495.410 215,790,158.012

Development and utilization rate of water resources 96.865 210.096 8.118 4367.614
Population urbanization rate 75.183 99.540 59.680 165.158

2019

Urban forest coverage 40.326 69.000 17.560 180.558
Centralized sewage treatment rate 95.358 97.730 91.410 4.378

Per capita green land area 14.577 20.300 8.400 11.876
Greening coverage rate of built-up areas 42.582 48.400 39.700 6.782

Urban employed people 691.944 1704.540 54.900 391,840.863
Gross domestic product 14,491.835 38,155.320 677.900 205,098,062.499

Development and utilization rate of water resources 88.971 258.227 10.198 6283.075
Population urbanization rate 70.592 99.520 54.900 195.817

2018

Urban forest coverage 39.540 68.500 16.900 242.209
Centralized sewage treatment rate 93.655 97.600 77.350 32.074

Per capita green land area 13.670 16.550 8.200 7.132
Greening coverage rate of built-up areas 42.214 48.400 39.400 7.708

Urban employed people 694.846 1909.510 54.900 419,908.134
Gross domestic product 12,597.231 32,679.870 622.300 155,146,748.396

Development and utilization rate of water resources 75.995 267.183 7.583 6693.965
Population urbanization rate 73.385 99.750 54.100 233.461

2017

Urban forest coverage 37.742 69.000 15.020 277.837
Centralized sewage treatment rate 93.155 96.810 80.720 26.112

Per capita green land area 13.855 17.450 8.190 9.182
Greening coverage rate of built-up areas 42.130 48.420 39.100 8.197

Urban employed people 638.993 1659.330 52.750 381,417.451
Gross domestic product 10,633.847 30,632.990 546.010 137,497,937.025

Development and utilization rate of water resources 90.123 223.618 9.775 5412.078
Population urbanization rate 75.355 99.000 53.670 192.632

3. Results and Analysis
3.1. Static Analysis

For the static efficiency evaluation of the SCC pilots, the urban panel data of each pilot
in 2019 were selected. Because the construction period of the national SCC pilot is three
years and all the pilots’ performances in 2019 were fully assessed [49,55], urban data from
2019 can reflect the cumulative long-term effect of urban water environment construction
since the SCC pilot started running. In addition, it can eliminate the interference of the
public health emergency (COVID-19) in 2020 on construction efficiency. Therefore, the
results obtained by inputting the indicator data of each pilot city in 2019 into DEAP2.1
software (University of New England, Armidale, Australia) are shown in Figure 2.

According to Figure 2, the results of the comprehensive efficiency, pure technical
efficiency, and scale efficiency of Chongqing, Chizhou, Xining, Hebi, and Sanya are all
1.000, indicating that DEA is effective in these pilots. The pure technical efficiency of
Shenzhen, Beijing, Xiamen, and Jinan is equal to 1.000, which means these pilots need
neither a corresponding input decrease nor an output increase, and the pure technical
efficiency is effective. However, the scale of these pilots does not match the input and
output, the scale efficiency is below 1.000, and the construction scale needs to be increased
or reduced. Therefore, the overall comprehensive efficiency of those pilots is less than
1.000, and the overall DEA is invalid. The pure technical efficiency and scale efficiency of
Wuhan and Shanghai are both less than 1.000, which are DEA-ineffective. It can be seen
from Figure 1 that most cities have the problem of ineffective scale. Shenzhen, Beijing,
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Xiamen, and Jinan are effective in terms of pure technical efficiency, but the scale efficiency
is invalid. Their input scales are redundant, resulting in low scale efficiency and decreasing
returns to scale. From the perspective of fixing output, their input scale should be reduced.
From a practical point of view, the reasons for the low scale efficiency of these cities should
be explained from the perspective of output. A high level of input indicators, such as urban
population quality and economic level, leads to a low level of output content, which results
in the relative ineffectiveness of their scale efficiency.
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According to the calculation rules of the DEA model and the calculation results of
DEAP2.1 software, the improvement values of Wuhan and Shanghai in this model are
compared based on the input indicators of Chizhou. When the scale efficiency factor is
ignored and the technical efficiency of the decision unit is considered alone, it is necessary to
compare the level of each indicator relative to the overall change. The calculation equation
of the improvement rate is as follows. The results are shown in Table 4.

Improvement rate =
Radial improvement value + Variable improvement value

Initial value
× 100 %, (5)

where the radial improvement value refers to the value of the relaxation variable of the
input index, that is the input redundancy value; the slack variable improvement value
refers to the value of the slack variable of the output index, that is the value of insufficient
output; and the target value is the value that achieves DEA effectiveness.

Table 4. Input redundancy and target value of invalid DEA units.

Input Indicators DMU Initial
Value

Radial
Improvement

Value

Slack Variable
Improvement

Value
Target
Value

Improvement
Rate (%)

Urban employed people
(10,000 persons)

Wuhan 623.13 −197.05 −311.68 114.40 −81.64
Shanghai 1376.20 −129.45 −1132.36 114.40 −91.69

Gross domestic product
(100 million Yuan)

Wuhan 16,223.21 −5130.24 −10,261.27 831.70 −94.87
Shanghai 38,155.32 −3588.87 −33,734.75 831.70 −97.82

Development and utilization rate
of water resources (%)

Wuhan 49.39 −15.62 −14.67 19.10 −61.33
Shanghai 157.19 −14.79 −123.30 19.10 −87.85

Population urbanization rate (%) Wuhan 80.29 −25.39 0.00 54.90 −31.62
Shanghai 60.60 −5.70 0.00 54.90 −9.41
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The lower pure technical efficiency of the two cities is caused by the lower output, and
there are technical and policy problems in the planning and construction of the sponge city.
Wuhan, in particular, has a pure technical efficiency of only 0.684, significantly lower than
the other cities. Its relatively high urbanization rate input restrains the city’s SCC efficiency
to a rather low level, thus making its pure technical efficiency lower. In addition, different
from Shenzhen, Beijing, Xiamen, and Jinan with decreasing returns to scale, Wuhan and
Shanghai are not fully effective in terms of scale efficiency, but the two cities have increasing
returns to scale. This shows that if the overall scale of the two cities increases, the returns
to scale will also increase, and the two cities still have great potential for the development
of SCC. The accelerated urbanization of Wuhan is the main reason for the gradual loss of
the sponge body. The reason why the efficiency of Wuhan and Shanghai is lower than that
of Chizhou is that their input–output ratio is relatively poor. In order to achieve higher
efficiency, the inputs need to be improved as shown in Table 4. The improvement rate is the
increase or decrease rate from the initial value to the target value. The improvement rate of
urban employed people and gross domestic product is large, while the improvement rate
of population urbanization is small.

3.2. Dynamic Analysis

In order to further analyze the urban construction efficiency of the pilots since the
implementation of the national SCC pilot policy, the dynamic efficiency of the pilots was
calculated via the Malmquist index model. The data from the 11 pilots from 2017 to 2020
were inputted into DEAP2.1 software, and the results are shown in Table 5 and Figure 3.

Table 5. Malmquist index of pilots from 2017 to 2020.

Year DMU Effch Techch Pech Sech Tfpch

2017–2018

Chongqing 1.033 0.845 1.000 1.033 0.873
Wuhan 1.048 0.975 1.000 1.048 1.022

Chizhou 1.000 0.834 1.000 1.000 0.834
Shanghai 1.008 1.000 1.006 1.003 1.008
Shenzhen 0.996 0.994 1.000 0.996 0.990

Xining 1.000 1.217 1.000 1.000 1.217
Beijing 1.005 0.994 1.000 1.005 1.000
Xiamen 0.903 0.999 1.000 0.903 0.903

Jinan 0.985 1.000 1.000 0.985 0.984
Hebi 1.000 0.949 1.000 1.000 0.949

Sanya 1.000 0.968 1.000 1.000 0.968

2018–2019

Chongqing 1.020 0.924 1.000 1.020 0.943
Wuhan 0.855 0.930 0.980 0.873 0.795

Chizhou 1.000 0.775 1.000 1.000 0.775
Shanghai 1.471 1.000 1.013 1.451 1.471
Shenzhen 0.995 1.003 1.000 0.995 0.997

Xining 1.000 0.832 1.000 1.000 0.832
Beijing 1.420 1.005 1.000 1.420 1.427
Xiamen 1.017 1.005 1.000 1.017 1.022

Jinan 1.307 1.002 1.000 1.307 1.311
Hebi 1.000 1.078 1.000 1.000 1.078

Sanya 1.000 0.837 1.000 1.000 0.837

2019–2020

Chongqing 0.908 1.444 1.000 0.908 1.311
Wuhan 1.089 0.939 0.991 1.099 1.023

Chizhou 1.000 1.555 1.000 1.000 1.555
Shanghai 0.892 0.947 0.965 0.924 0.844
Shenzhen 1.083 0.927 0.987 1.097 1.004

Xining 0.776 1.106 0.939 0.827 0.859
Beijing 0.771 0.908 1.000 0.771 0.701
Xiamen 1.111 0.946 1.000 1.111 1.051

Jinan 0.806 0.969 0.978 0.824 0.781
Hebi 1.000 0.993 1.000 1.000 0.993

Sanya 1.000 1.081 1.000 1.000 1.081
Mean value 1.015 0.999 0.996 1.019 1.013
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From a global perspective, according to the results of the Malmquist index model, the
increase in total factor productivity of SCC in the 11 pilots mainly depends on the scale
efficiency change index, which is limited by the technological progress index and the pure
technical efficiency change index. From 2017 to 2018, only three of the selected pilots were
in the growth state, with a total factor productivity index greater than 1 (accounting for only
27.27%); from 2018 to 2019, the proportion of the pilots in the growth state of the total factor
productivity index was 45.46%; from 2019 to 2020, the pilots with a total factor productivity
index in the growth state accounted for 54.55%; from 2017 to 2020, the average value of
the total factor productivity index of all selected pilot cities was 1.013, which is greater
than 1, so the overall efficiency of the SCC pilots was developing positively, which verifies
that the overall SCC pilot policy in China exhibits environmentally friendly, positive, and
sustainable development.

From a spatial perspective, in the two stages of 2017–2018 and 2018–2019, the total
factor productivity index of Chongqing, Chizhou, Hebi, Xining, and the other pilots was
in decline due to the influence of technological progress. In the initial stage of SCC, the
urban economic level, population, and urbanization affect the scale of urban pilot projects’
construction, thus resulting in a relatively low efficiency of scale construction in some pilots
with an inferior economic level and low population. The reason for that is the insufficient
utilization of input factors in the pilots, which leads to resource redundancy due to the
underutilization and transformation of some inputs. Therefore, the returns to scale cannot
be formed—that is, the effect of the SCC is not optimal. From 2019 to 2020, the efficiency of
the pilots changed significantly. Compared with the previous two stages, the total factor
productivity index of Shanghai, Beijing, Jinan, and other cities decreased significantly, and
the decline rate of some cities was higher than 0.30. There was a certain decline in scale and
technical factors, while the decline rate of the technical progress index was not obvious. In
the initial stage of the SCC pilot, the increase in total factor productivity in SCC depends
on the change index of scale efficiency, which is affected by the level of urban economic
development. From 2019 to 2020, the urban scale efficiency was in a state of decline, and
the technological progress and pure technical efficiency had a relatively smooth change.
The scale efficiency fluctuated greatly, and the scale efficiency was no longer dominated by
the economic level.

In terms of the time dimension, the mean value of the total factor productivity index
of pilots in the three stages (2017–2018, 2018–2019, and 2019–2020) was 1.013; the mean
value of the total factor productivity index of pilots in 2017–2018 was 0.977, while the mean
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value of the 2018–2019 and 2019–2020 phases was 1.044 and 1.018, respectively. From the
perspective of the change in the three stages, the average value of the stage from 2017 to
2018 was less than 1. Due to the technological progress index level and pure technical
efficiency of the pilots being relatively low, the average level of the total factor productivity
efficiency was low. From 2018 to 2019, the scale index and the total factor productivity
index were increasing, while the technological progress index remained at a standstill, but
the pure technological change index was in an increasing state. From 2019 to 2020, due to
the expiration of the pilot construction period and the COVID-19 pandemic, the change
index of scale efficiency decreased, but the total factor growth index was still greater than
1, remaining in a state of growth. From 2017 to 2020, the overall total factor productivity
efficiency gradually and steadily increased. The inputs of urban economy, population,
and other factors were fully transformed, and the technological level of the low-impact
development of sponge cities gradually increased, making the scale of water environment
construction more effective. Under the same scale conditions, the returns to scale increased.
In the initial stage of SCC, the efficient construction of an urban construction scale leads
to positive development in SCC. During the construction process, technological progress
leads to a steady growth in total factor productivity; even if the scale efficiency is affected
by emergencies, the total factor productivity is still in a growing state.

4. Conclusions

This paper selects the macro indicators that reflect the outputs of SCC as the outputs
of efficiency evaluation, which can comprehensively reflect the efficiency of SCC pilots.
The efficiency evaluation model of SCC is established by using the DEA method, which not
only reflects the relative efficiency of the input and output of SCC via the relative efficiency
value of DMUs, but also analyzes the direction and scale of urban construction according
to the pure technical efficiency and the scale efficiency of DMUs. The DEA model for
efficiency evaluation of SCC could be used to evaluate the efficiency of pilots and obtained
some valuable results.

From a static perspective, most SCC pilots are fully effective, while a few pilots are
ineffective. Among them, the pure technical efficiency of Wuhan is the lowest (0.684);
the scale efficiency of Xiamen is the lowest (0.626), resulting in the lowest comprehensive
efficiency of 0.626. The pure technical efficiency of Wuhan and Shanghai is low, which
leads to a technical efficiency less than 1; Shenzhen and Xiamen have low scale efficiency,
which leads to a technical efficiency less than 1. The SCC efficiency of Chizhou, Chongqing,
and other pilots is fully effective—that is, under the assumption of a variable scale, the
pure technical efficiency and scale efficiency are both effective.

From a dynamic perspective, from 2017 to 2020, the average total factor productivity
of all pilot cities was 1.013. This shows that the overall efficiency in the selected 11 SCC
pilot cities was good. From 2017 to 2018, the average total factor productivity of the pilot
cities was 0.977, mainly because the comprehensive technical efficiency change index was
less than 1; from 2018 to 2019, the comprehensive technical efficiency change index was
1.099, and the average total factor productivity of the pilot cities increased to 1.044; from
2019 to 2020, the average total factor productivity of the pilot cities was 1.018, which was
lower than the previous period but still greater than 1, mainly because the technological
progress index changed to 1.074, which improved the total factor productivity.

5. Recommendations

According to the results of the model analysis and the current situation of SCC pilots
in China, countermeasures and suggestions are put forward as follows.

1. SCC pilots should pay attention to the efficiency evaluation and speed up the estab-
lishment of the SCC efficiency evaluation system. The water environment problem
is complex. In order to improve the efficiency of SCC, it is necessary to take into
account the technicality of construction and the effectiveness of scale. The reason for
the ineffectiveness of DEA in some pilots is due to the low pure technical efficiency
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and a certain input-to-output ratio problem. The efficiency evaluation of SCC is a
dissection of the problems existing in terms of the technology and scale of the existing
sponge city projects, and also a guide for future sponge city planning and construction.
With the continuous promotion of the SCC pilots and the popularization of the con-
cept of global SCC, sponge cities will be a key direction of urban ecological planning
and construction in the future. At this stage, a relatively complete SCC efficiency
evaluation system has not yet been constructed. Therefore, at this stage, accelerating
the establishment of an SCC efficiency evaluation system is a key way to evaluate
the effectiveness of SCC and to determine the difficulties of SCC, which is also an
important part of the planning, construction, and future governance of sponge cities.
We have mainly considered the efficiency of SCC from the perspective of the water
environment. In later stages, rainwater and flood management dimension indicators,
such as the length of drainage pipelines and the density of the drainage pipe network,
should be added to make the efficiency evaluation system more scientific, reasonable,
and comprehensive.

2. It is necessary to rationalize the investment structure and improve the scale efficiency
of SCC. In the static analysis of 11 SCC pilots, only four were effective in terms of
scale efficiency, and seven were ineffective, especially Shenzhen and Xiamen. Most
SCC pilots with a low scale efficiency are characterized by decreasing returns to scale.
Although the overall scale of the pilot is large and the urbanization rate is high, the
green infrastructure investment, urban greening level, effective use of water resources,
and other explicit sponge city indicators are difficult to match. Rapid urbanization
conflicts with the high demands for urban infrastructure construction. Therefore,
in the process of urban development, the government should pay attention to the
construction of green infrastructure with the sponge city concept as the main body, to
improve the water environment of the city. Ultimately, the government should build a
sustainable development model that matches the scale of the city, the urban ecological
environment, and the number of sponge bodies.

3. It is suggested that SCC pilots should improve technical efficiency and enhance
the efficiency of all construction factors. According to the dynamic analysis of the
Malmquist index, in the whole period from 2017 to 2020, the total factor productivity
index was limited by the technological progress index. The results reflect a marginal
decrease in the output of the productivity efficiency of input factors under the optimal
input scale. Especially in the initial stage of SCC, the technological progress index and
pure technical efficiency were limited by the growth of the total factor productivity
index, which is the main factor of construction efficiency in the initial stage of sponge
city construction and development. When cities set out to launch large-scale SCC
pilot projects, the construction concept, which is a balance between technology and
scale development, should be applied. In addition, when the scale efficiency of a
city is impacted under special circumstances, the total factor productivity will also be
greatly affected; therefore, the input structure should be improved according to the
scale factors.

Author Contributions: Introduction, conceptualization, conclusions, and recommendations,
writing—original draft preparation: H.Z. Conceptualization and methodology: S.L. Writing of analy-
sis, writing—review and editing: J.H. Data curation: Q.C. All authors have read and agreed to the
published version of the manuscript.

Funding: The Key Scientific Research Project of Colleges and Universities in Anhui Province
(Grant No. SK2021A0239), the Innovation and Development Research Project in Anhui Province
(Grant No. 2021CX083), the National Natural Science Foundation of China (Grant No. 52108426,
51808326), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20210513) are
gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Int. J. Environ. Res. Public Health 2022, 19, 11195 14 of 17

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Original values of main variables in 11 pilots from 2017 to 2020.

Variable/Chongqing 2017 2018 2019 2020

Urban forest coverage (%) 46.50 48.30 50.10 52.50
Centralized sewage treatment rate (%) 94.70 94.91 94.91 97.95

Per capita green land area (square meter) 17.05 16.55 16.16 16.16
Greening coverage rate of built-up areas (%) 40.32 40.42 41.74 43.05

Urban employed people (10,000 persons) 1659.33 1909.51 1704.54 1676.01
Gross domestic product (100 million Yuan) 6039.4 20,363.19 23,065.77 25,002.79

Development and utilization rate of water resources (%) 11.80 14.72 15.35 9.14
Population urbanization rate (%) 65.00 65.50 66.80 69.46

Variable/Wuhan 2017 2018 2019 2020

Urban forest coverage (%) 15.02 22.88 42.07 42.07
Centralized sewage treatment rate (%) 96.00 96.47 95.06 97.00

Per capita green land area (square meter) 9.62 9.65 10.19 14.04
Greening coverage rate of built-up areas (%) 39.55 39.46 40.02 42.07

Urban employed people (10,000 persons) 564.08 610.72 623.13 603.79
Gross domestic product (100 million Yuan) 13,090.81 14,847.29 16,223.21 15,616.1

Development and utilization rate of water resources (%) 88.49 16.13 49.40 108.98
Population urbanization rate (%) 72.60 73.20 80.29 80.49

Variable/Chizhou 2017 2018 2019 2020

Urban forest coverage (%) 59.75 59.90 44.90 60.40
Centralized sewage treatment rate (%) 94.46 95.20 96.60 95.80

Per capita green land area (square meter) 17.45 15.42 15.50 16.70
Greening coverage rate of built-up areas (%) 43.40 43.50 44.37 43.80

Urban employed people (10,000 persons) 114.47 114.57 114.40 65.90
Gross domestic product (100 million Yuan) 624.35 684.90 831.70 868.90

Development and utilization rate of water resources (%) 11.23 14.98 19.10 8.12
Population urbanization rate (%) 53.67 54.10 54.90 59.68

Variable/Shanghai 2017 2018 2019 2020

Urban forest coverage (%) 16.20 16.90 17.56 18.50
Centralized sewage treatment rate (%) 93.99 95.20 96.30 96.17

Per capita green land area (square meter) 8.19 8.20 8.40 9.05
Greening coverage rate of built-up areas (%) 39.10 39.40 39.70 37.32

Urban employed people (10,000 persons) 1372.65 1375.66 1376.2 1374
Gross domestic product (100 million Yuan) 30,632.99 32,679.87 38,155.32 38,700.58

Development and utilization rate of water resources (%) 223.62 267.18 157.19 166.38
Population urbanization rate (%) 87.70 88.10 60.60 71.69

Variable/Shenzhen 2017 2018 2019 2020

Urban forest coverage (%) 40.00 39.80 39.80 39.39
Centralized sewage treatment rate (%) 96.81 97.60 97.72 98.00

Per capita green land area (square meter) 15.95 15.40 14.90 15.00
Greening coverage rate of built-up areas (%) 45.10 45.00 43.00 43.40

Urban employed people (10,000 persons) 1252.83 1291.31 1283.37 1292.29
Gross domestic product (100 million Yuan) 22,490.06 24,221.98 26,927.09 27,670.24

Development and utilization rate of water resources (%) 102.96 89.80 77.37 103.38
Population urbanization rate (%) 99.00 99.75 99.52 99.54
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Table A1. Cont.

Variable/Xining 2017 2018 2019 2020

Urban forest coverage (%) 33.00 34.00 35.10 36.00
Centralized sewage treatment rate (%) 85.67 91.41 91.41 93.00

Per capita green land area (square meter) 12.47 12.30 12.50 12.82
Greening coverage rate of built-up areas (%) 40.50 40.50 40.58 40.50

Urban employed people (10,000 persons) 131.93 132.84 133.21 134.50
Gross domestic product (100 million Yuan) 1284.91 1260.86 1363.59 1372.98

Development and utilization rate of water resources (%) 9.78 7.58 10.20 49.23
Population urbanization rate (%) 71.14 59.58 72.85 73.00

Variable/Beijing 2017 2018 2019 2020

Urban forest coverage (%) 35.84 43.50 44.00 43.77
Centralized sewage treatment rate (%) 94.98 93.40 95.00 94.76

Per capita green land area (square meter) 16.20 16.30 16.40 16.59
Greening coverage rate of built-up areas (%) 48.42 48.40 48.40 48.96

Urban employed people (10,000 persons) 1246.8 1237.8 1397.4 1164
Gross domestic product (100 million Yuan) 29,883 30,320 35,371.3 36,102.6

Development and utilization rate of water resources (%) 132.55 110.70 169.79 157.36
Population urbanization rate (%) 86.50 86.50 60.60 87.50

Variable/Xiamen 2017 2018 2019 2020

Urban forest coverage (%) 42.80 43.00 43.80 44.00
Centralized sewage treatment rate (%) 95.77 96.02 96.36 100.00

Per capita green land area (square meter) 14.09 14.85 15.60 14.60
Greening coverage rate of built-up areas (%) 43.59 44.10 45.13 45.52

Urban employed people (10,000 persons) 146.00 308.30 334.48 126.70
Gross domestic product (100 million Yuan) 4351.18 4791.41 6384 6384.02

Development and utilization rate of water resources (%) 76.15 44.79 62.26 127.82
Population urbanization rate (%) 89.10 89.10 89.20 89.41

Variable/Jinan 2017 2018 2019 2020

Urban forest coverage (%) 24.45 25.56 25.56 27.40
Centralized sewage treatment rate (%) 95.98 96.59 97.73 98.17

Per capita green land area (square meter) 11.79 13.30 20.30 12.80
Greening coverage rate of built-up areas (%) 40.57 40.52 41.18 40.70

Urban employed people (10,000 persons) 405.38 510.30 492.36 510.30
Gross domestic product (100 million Yuan) 7201.96 7856.56 9443.4 10,140.91

Development and utilization rate of water resources (%) 155.70 79.85 124.13 85.00
Population urbanization rate (%) 70.53 72.10 71.21 73.46

Variable/Hebi 2017 2018 2019 2020

Urban forest coverage (%) 32.60 32.60 31.70 33.30
Centralized sewage treatment rate (%) 95.62 96.05 96.05 97.00

Per capita green land area (square meter) 14.19 14.20 18.00 18.00
Greening coverage rate of built-up areas (%) 39.91 41.95 43.19 43.20

Urban employed people (10,000 persons) 82.70 97.40 97.40 101.42
Gross domestic product (100 million Yuan) 827.65 921.18 966.90 980.97

Development and utilization rate of water resources (%) 163.77 171.04 258.23 210.10
Population urbanization rate (%) 58.76 60.07 61.31 62.51

Variable/Sanya 2017 2018 2019 2020

Urban forest coverage (%) 69.00 68.50 69.00 69.00
Centralized sewage treatment rate (%) 80.72 77.35 91.80 100.40

Per capita green land area (square meter) 15.41 14.20 12.40 13.40
Greening coverage rate of built-up areas (%) 42.97 41.10 41.10 42.30

Urban employed people (10,000 persons) 52.75 54.90 54.90 70.28
Gross domestic product (100 million Yuan) 546.01 622.30 677.90 695.41

Development and utilization rate of water resources (%) 15.29 19.17 35.66 40.00
Population urbanization rate (%) 74.91 59.23 59.23 60.27
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